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(57) ABSTRACT

A computer vision method that includes deriving a relation-
ship of spatial and temporal image derivatives of an object to
bidirectional reflectance distribution function (BRDF)
derivatives under camera motion, and deriving with a proces-
sor a quasilinear partial differential equation for solving sur-
faced depth for orthographic projections using the relation-
ship of spatial and temporal image derivatives without
requiring knowledge of the BRDF. The method may further
recover surface depth for an object with unknown BRDF
under perspective projection.
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SHAPE FROM CAMERA MOTION FOR
UNKNOWN MATERIAL REFLECTANCE

RELATED APPLICATION INFORMATION

This application claims priority to provisional application
Ser. No. 61/897,436 filed on Oct. 30, 2013, incorporated
herein by reference.

BACKGROUND

1. Technical Field

The present disclosure relates to strategies for the funda-
mental computer vision problem of determining shape from
small (differential) motion of a camera.

2. Description of the Related Art

Computer vision is a field that includes methods for acquir-
ing, processing, analyzing, and understanding images and, in
general, high-dimensional data from the real world in orderto
produce numerical or symbolic information, e.g., in the forms
of'decisions. A theme in the development of this field has been
to duplicate the abilities of human vision by electronically
perceiving and understanding an image. This image under-
standing can be seen as the disentangling of symbolic infor-
mation from image data using models constructed with the
aid of geometry, physics, statistics, and learning theory. Com-
puter vision has also been described as the enterprise of
automating and integrating a wide range of processes and
representations for vision perception. One fundamental com-
puter vision problem is determining shape of an object from
the small (differential) motion of a camera, for example,
when the object has an unknown surface reflectance. In the
general case, reflectance can be an arbitrary function of sur-
face orientation, camera and lighting, which can be referred to
as the bidirectional reflectance distribution function (BRDF).
Shape and camera motion is typically solved under the
umbrella of multi-view stereo methods, which rely on Lam-
bertian assumptions, that is, assume that the image intensity
does not change with camera motion. This is incorrect for
objects formed of typical materials, such as metals and plas-
tics etc.

SUMMARY

These and other drawbacks and disadvantages of the prior
art can be addressed by the present principles, which may be
applied to the fundamental computer vision problem of deter-
mining shape from small (differential) motion of the camera,
even when the object has an unknown surface reflectance. For
example, the methods disclosed herein allow for the determi-
nation of shape from the small or differential motion of the
camera for an unknown isotropic bidirectional reflectance
distribution function (BRDF). In prior methods, reflectance is
an arbitrary function of surface orientation of the object,
camera and lighting. The methods, systems and computer
products disclosed herein account for reflectance behavior, as
an unknown BRDF, relate it to image intensities and demon-
strate that it is still possible to recover the shape.

In some embodiments, a general relation is first derived
that relates spatial and temporal image derivatives to BRDF
derivatives under camera motion. Contrary to initial impres-
sions, it has been determined that directly using the relation
for shape recovery is not possible due to a rank deficiency.
The form of the relationship is exploited to derive the follow-
ing for unknown isotropic BRDFs:
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(1) For orthographic projections, a first-order quasilinear par-
tial differential equation (PDE) is derived, which can be
solved for surface depth using a method of characteristics.
(2) For perspective projections, estimates for depth can be
directly made from image derivatives in three or more images.
Typically, for perspective images, an additional constraint
may be derived for the surface gradient of the object. The
depth and surface gradient derivatives may then be combined
to yield and efficient solution for surface depth as a sparse
linear system.

In one embodiment, a computer vision method is provided
that includes deriving with a processor a relationship of spa-
tial and temporal image derivatives of an object to bidirec-
tional reflectance distribution function (BRDF) derivatives
under camera motion that provides an image sequence, and
deriving a quasilinear partial differential equation for solving
surfaced depth for orthographic projections using the rela-
tionship of spatial and temporal image derivatives to bidirec-
tional reflectance distribution function (BRDF) derivatives.
In a following sequence, the method may include solving the
surface depth from the quasilinear partial differential equa-
tion, and reconstructing an image of the object from the
solving of the surface depth for orthographic projections.

In another aspect, a computer program product is provided
that includes a non-transistory computer readable storage
medium having computer readable program code embodied
therein for performing a method for computer vision, the
method including deriving with a processor a relationship of
spatial and temporal image derivatives of an object to bidi-
rectional reflectance distribution function (BRDF) deriva-
tives under camera motion that provides an image sequence,
and deriving a quasilinear partial differential equation for
solving surfaced depth for orthographic projections using the
relationship of spatial and temporal image derivatives to bidi-
rectional reflectance distribution function (BRDF) deriva-
tives. In a following sequence, the method may further
include solving the surface depth from the quasilinear partial
differential equation, and reconstructing an image of the
object from the solving of the surface depth for orthographic
projections.

In another embodiment, a computer vision method is pro-
vided for perspective cameras that includes deriving a rela-
tionship of spatial and temporal image derivatives from an
object to bidirectional reflectance distribution function
(BRDF) derivatives under camera motion that provides an
image sequence from at least three images of the object using
a processor; and estimating depth from the spatial and tem-
poral image derivatives. In some embodiments, the method
may further include deriving a constraint on surface gradient
of the object, combining the depth and the constraint of the
surface gradient to yield a solution for surface depth for
perspective projections as a sparse linear system, and recon-
structing an image of the object from the solution for surface
depth for perspective projections.

In another aspect, a computer program product is provided
that includes a non-transistory computer readable storage
medium having computer readable program code embodied
therein for performing a method for computer vision, the
method including deriving a relationship of spatial and tem-
poral image derivatives from an object to bidirectional reflec-
tance distribution function (BRDF) derivatives under camera
motion that provides an image sequence from at least three
images of the object using a processor, and estimating depth
from the spatial and temporal image derivatives. In some
embodiments, the method of the computer program product
may further include deriving a constraint on surface gradient
of the object, combining the depth and the constraint of the
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surface gradient to yield a solution for surface depth for
perspective projections as a sparse linear system, and recon-
structing an image of the object from the solution for surface
depth for perspective projections.

In another embodiment of the present disclosure, a system
for computer vision is provided that includes a spatial and
temporal image derivative module for deriving a relationship
of spatial and temporal image derivatives from an object to
bidirectional reflectance distribution function (BRDF)
derivatives under camera motion using a processor. The sys-
tem may further include an orthographic module for deriving
with a processor a quasilinear partial differential equation for
solving surfaced depth for orthographic projections using the
relationship of spatial and temporal image derivatives to bidi-
rectional reflectance distribution function (BRDF) deriva-
tives, solving the surface depth from the quasilinear partial
differential equation, and reconstructing an image of the
object from the solving of the surface depth for orthographic
projections. The system may also include a perspective mod-
ule for estimating depth from the spatial and temporal image
derivatives, deriving a constraint on surface gradient of the
object, combining the depth and the constraint of the surface
gradient to yield a solution for surface depth for perspective
projections as a sparse linear system, and reconstructing an
image of the object from the solution for surface depth for
perspective projections.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a pictorial view depicting the elements that are
considered when calculating the bidirectional reflectance dis-
tribution function (BRDF).

FIG. 2 is a block/flow diagram of a system and method for
determining shape of an object being viewed using motion of
the camera regardless of knowing the surface reflectance of
the object using a bidirectional reflectance distribution func-
tion, in accordance with one embodiment of the present dis-
closure.

FIG. 3. is a pictorial view of the object, light source, and
camera, as used in one embodiment of the present disclosure.

FIG. 4 is a pictorial view of object positioning in response
to camera motion for determining images and feature tracks,
as used in one embodiment of the present disclosure.

FIG. 5 is a pictorial view illustrating the notation used in
general bidirectional reflectance distribution function
(BRDF), as used in one embodiment of the present disclo-
sure.

FIG. 6 shows an exemplary computer vision system to
perform the methods and computer products disclosed
herein, in accordance with the present disclosure.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The methods, systems and computer products disclosed
herein account for reflectance behavior, as an unknown
BRDYF, relate it to image intensities, and demonstrate that it is
still possible to recover the shape. In general, one contribution
of the present disclosure is that object shape may be recon-
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4

structed using an image sequence, even with unknown BRDF,
for both orthographic and perspective projections.

As used herein, the term “bidirectional reflectance distri-
bution function (BRDF)” is a four-dimensional function that
defines how light is reflected at an opaque surface. The func-
tion takes a negative incoming light direction, w,, and outgo-
ing direction, w,, both defined with respect to the surface
normal, n, and returns the ratio of reflected radiance exiting
along m, to the irradiance incident on the surface from direc-
tion w,. Each direction  is itself parameterized by azimuth
angle ¢ and zenith angle 0, therefore the BRDF as a whole is
4-dimensional. The BRDF has units sr™*, with steradian (sr)
being a unit of solid angle. Referring to FIG. 1, the definition
for BRDF may be:

dL(w,)  dL{(w)
dE(w;) ~ Li(w)cosOdw;

Equation (1)

frlwi, wp) =

where L is radiance, or power per unit solid-angle-in-the-
direction-of-a-ray per unit projected-area-perpendicular-to-
the-ray, E is irradiance, or power per unit surface area, and &,
is the angle between w, and the surface normal, n. The index
i indicates incident light, whereas the index r indicates
reflected light.

In some embodiments, a general relation is first derived
that relates spatial and temporal image derivatives to BRDF
derivatives under camera motion. It has been determined that
despite initial impressions, it is not possible to directly use the
relation for shape recovery due to a rank deficiency. The
methods, structures and computer products that are disclosed
herein, exploit the form of the relationship to derive isotropic
BRDFs for orthographic projections and perspective projec-
tions. As used herein, the term “orthographic projection” (or
orthogonal projection) is a means of representing a three-
dimensional object in two dimensions. In some embodi-
ments, orthographic projection is a form of parallel projec-
tion, where all the projection lines are orthogonal to the
projection plane, resulting in every plane of the scene appear-
ing in affine transformation on the viewing surface. It can be
further divided into multi-view orthographic projections and
axonometric projections. In some examples, a lens providing
an orthographic projection is known as an (object-space)
telecentric lens. A “weak” perspective projection uses the
same principles of an orthographic projection, but requires
the scaling factor to be specified, thus ensuring that closer
objects appear bigger in the projection, and vice-versa. When
the human eye views a scene, objects in the distance appear
smaller than objects close by—this is known as “perspec-
tive”. While “orthographic projection” ignores this effect to
allow accurate measurements, a “perspective projection”
definition shows distant objects as smaller to provide addi-
tional realism.

In some embodiments, the form of the general relationship
is first derived that relates spatial and temporal image deriva-
tives to BRDF derivatives under camera motion can be
exploited to derive the following for unknown isotropic
BRDFs for orthographic projections, in which a first-order
quasilinear partial differential equation (PDE) is derived that
can be solved for surface depth using a method of character-
istics. The method of characteristics is a technique for solving
partial differential equations. The method is to reduce a par-
tial differential equation to a family of ordinary differential
equations along which the solution can be integrated from
some initial data given on a suitable hypersurface. For
example, for a first-order PDE (partial differential equations),
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the method of characteristics discovers curves (called char-
acteristic curves or just characteristics) along which the PDE
becomes an ordinary differential equation (ODE). Once the
ODE is found, it can be solved along the characteristic curves
and transformed into a solution for the original PDE.

In some embodiments, for perspective projections, it has
been determined that depth may be directly estimated from
image derivatives in three or more images. For example, for
perspective images, an additional constrained may be derived
for the surface gradient. A constraint is a condition of an
optimization problem that the solution must satisfy. As will be
described herein, the depth and gradient constraints may be
combined to yield an efficient solution for surface depth as a
sparse linear system. Further details regarding the methods,
systems and computer products for determining shape of an
object being viewed using motion of the camera regardless of
knowing the surface reflectance of the object that are dis-
closed herein may now be discussed in greater detail with
reference to FIGS. 2-6.

FIG. 2 is a block/flow diagram of a system and method for
determining shape of an object being viewed using motion of
the camera regardless of knowing the surface reflectance of
the object using a bidirectional reflectance distribution func-
tion (BRDF). The method may begin with step 50, which
includes providing the object from which the image is taken.
Referring to FIG. 3, the object 51 may have a surface com-
posed of any material, such as plastic, metal, ceramic, cloth,
composite or any combination thereof. The object 51 may be
any solid object having a fixed geometry. A light source 52 is
also provided to illuminate the object 51, and a camera 53 is
employed to take images from the object 51. The camera 53
may be an orthographic camera or a perspective camera. The
camera 53 may be in motion while images are taken from the
object. At step 55, data is recorded on the images taken from
the object 51 and feature track as the object and camera are
moved to provide camera motion. FIG. 4 depicts the motion
of'the object 51a, 515, 51c¢ as the object and camera are moved
to provide camera motion. The position, i.e., feature track, of
the object identified by reference number 51a may be
expressed by equation: [I+[w ] 10]. The position, i.e., feature
track, of'the object identified by reference number 515 may be
expressed by equation: [110]. The position, i.e., feature track,
of the object identified by reference number 51¢ may be
expressed by equation: [I+[w,],|0]. Referring to FIG. 2, at
step 60, 3D points are sparsed for the image and feature
tracks, as well as the relative camera positions (w,, t,).

In a following process step, at step 100, a relation for a
general bidirectional reflectance distribution function
(BRDF) is derived and it is related to surface depth of the
image of the object. This is one step of some embodiments of
the present disclosure that is distinguishable from prior imag-
ing methods, in which prior imaging methods rely upon dif-
fuse reflectance and brightness constancy. In some embodi-
ments, the differential stereo relation for a general
bidirectional reflectance distribution function (BRDF) is as
follows, in which image formation at time t:

I(u,n)=0(x)p(x.n,5,v), Equation (2)

wherein n is the surface normal, s is the light direction, v is the
viewing direction, and fis the focal length, as depicted in FIG.
5. Further, x=(x, y, ) is the object point, and u=(u, v) is the
image point. o(x) may be the albedo, i.e., reflection coeffi-
cient, and p(x, 1, s, v) is an expression for the BRDF. The total
derivative of equation (2) is as follows:
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Tatlitl = d do Equation (3)
Wit + LV + 1—0'd7[p(n,x)+pE

In some embodiments, the albedo is intrinsic on the surface,
so its total derivative is zero. The lighting is configured to be
distant, so BRDF spatial derivative is also zero. Taking loga-
rithms eliminates albedo. In some embodiments, the differ-
ential stereo relation can be equal to:

(VE)u+Ef=(uxV,, log p+sxV, log p)w, Equation (4)

in which p is the motion field, and w is the angular velocity,
and E=log(]).

One embodiment of an equation for surface depth for use
with the relation for the general bidirectional reflectance dis-
tribution function (BRDF) that is derived and is related to
surface depth of the image of the object at step 100, is as
follows:

pr+g=o’n

Referring to FIG. 2, at step 101, a rank deficiency is
exploited to eliminate BRDF terms and recover depth (and
normals). In some examples, one differential motion of the
camera is insufficient to extract depth. At step 101, rank
deficient relations are considered across the image sequence
for an orthographic camera, and a perspective camera.

For an orthographic camera, the motion field may be equal
to:

Equation (5)

—Vws + Ty + WhZ Equation (6)

Vs + Ty — W%

The form of differential stereo relationship for an ortho-
graphic camera may be:

pr+g=nTm.

For a perspective camera, the motion field may be equal to:

i — w) Puv — w3V + Equation (7)

1
T/ (11 = Puts + w27)

—w1 BV — wafuv — w3u +
1
Tﬁz(‘z’z — Puts +w12)

The form of differential stereo relationship for a perspec-
tive camera may be:

Equation (8)

In either the orthoscopic camera or perspective camera
case, the form of p is p=E, w,-E, ;. The matrix with rows [p,
q, w] from the different images is rank deficient. In some
embodiments, this rank deficiency can be used to eliminate
BRDF (and lighting) dependency.

Referring to FIG. 2, at step 102, a constraint is exploited
that limits the BRDF dependence. For example, in some
embodiments, the form of a depth-normal-BRDF relation-
ship may be employed. The motion field for an orthographic
camera may be provided by Equation (6), and the motion field
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for a perspective camera may be provided by Equation (7).
The form of differential stereo relationship for an ortho-
graphic camera may be provided by:

pzg=nto’ i=1,. .., m Equation (9)

The form of differential stereo relationship for a perspec-

tive camera may be provided by:
(p“+Bp Hz-((1+pz)m) T wi+(p ++")=0

In either the orthoscopic camera or perspective camera
case, 7 v=0. This constraint may be used to eliminate BRDF
and arbitrary unknown lighting.

Referring to FIG. 2, at step 150, a decision is made as to
whether an orthographic or perspective camera is to be
employed for determining the shape of the object.

When employing an orthographic camera at step 200, in
some embodiments, the rank deficiency of step 101 is
employed to recover depth. The rank deficiency of step 101
may be employed to recover depth when the BRDF model
depends on light source and view directions in step 201. Some
reflectance depends on the angles subtended by the normal on
the source and view directions. Such BRDFs can explain the
darkening near image edges for materials like fabrics. The
analysis conducted in step 201 may be suitable for objects
having a surface similar to fabrics.

In this scenario, the light direction is unknown. In some
embodiments, using two or more differential motions of the
camera, we may eliminate BRDF terms to derive a homoge-
neous quasilinear partial differential equation (PDE) in sur-
face depth. In some embodiments, the PDE can be solved to
recover level curves of the surface using a method of charac-
teristics. In some embodiments, the level curves are interpo-
lated to recover dense depth. In step 201, the BRDF typically
depends upon light direction (s) and viewing direction (v).
The modeling for orthographic camera’s under this scenario
typically includes a isotropic BRDF, as such:

Equation (10)

log p(n,s,v)=p(n’s,n™v) Equation (11)

The differential stereo equations in accordance with step
201 may be as follows:

pr+g=o’n Equation (12)

=X Vip+sx Vsp =nx (pOs+ppv)+sxpOn=ponxv=y Equation (13)

In some embodiments, a key step of recovering depth data
in step 201 is to eliminate BRDF using the rank deficiency
across two or more images. One example of a constraint on
surface depth and gradient that is independent of both BRDF
and lighting is as follows:

(Y2 +E Y )-E 2z, +[(Y3=E )y HE,2]2,70 Equation (14)

Equation (14) is an example of a homogenous quasilinear
PDE.

One reconstruction method at step 201 may include recov-
ering level curves using a method of characteristics, and to
interpolate level curves to recover dense depth. A second
reconstruction method may include to discretize the quasilin-
ear PDE, and solving for depth as a nonlinear optimization
problem.

Under orthography, for a BRDF of unknown functional
form that depends on light and view directions, two differen-
tial motions of the camera may suffice to yield a constraint of
surface depth independent of BRDF and lighting.

Step 202 illustrates another BRDF model in accordance
with the present disclosure that employs an orthographic
camera. The BRDF model at step 202 depends on light source
and half-angle directions. The BRDF model illustrated by
step 202 may be suitable for use with objects composed of
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materials like metals and plastics. For many common mate-
rials like metals and plastics, it is reasonable to assume that
the reflectance depends on the angle between the surface
normal and the half-angle between the source and view direc-
tions. For a surface of such material type, it can be shown that
a sequence of differential stereo relations yields a BRDF-
invariant constraint on surface depth. In this embodiment, the
light direction is known. In some embodiments, using two or
more differential motions of the camera, BRDF terms may be
eliminated to derive an inhomogeneous quasilinear PDE in
surface depth. This PDE can be solved to recover character-
istic curves of the surface. The characteristic curves are inter-
polated to recover dense depth.

In some embodiments, an isotropic BRDF equation for use
with step 202 may be as follows:

Po"spTh)=log p(ns,v) Equation (15)

In some embodiments, the differential stereo equations for
use with step 202 include the following:

pi+g=w'n Equation (16)

_ T hsxv Equation (17)

n=pn -
lls+ vl lls+viI?

nXy

In some embodiments, step 202 includes eliminates BRDF
using arank deficiency across 2 or more images. One example
of a inhomogeneous quasilinear PDE suitable for use with
step 202 is as follows:

Equation: (A +Ao2)z,+(h3+hy)z,+hs=0 Equation (18)

One image reconstruction method for use with step 202
may include recovering characteristic curves using the
method of characteristics, and interpolating characteristic
curves to recover dense depth. Another image reconstruction
method for use with step 202 may include to discretize the
quasilinear PDE, and to solve for depth as a nonlinear opti-
mization problem.

Under orthographic projection, for a BRDF of unknown
functional form that depends on known light and half-angle
directions, two different motions of the camera suffice to
yield a BRDF-invariant constraint on surface depth.

Step 203 illustrates another BRDF model in accordance
with the present disclosure that employs an orthographic
camera. The BRDF model in step 203 depends on light source
and arbitrary direction in the source-view plane, i.e., depen-
dence on arbitrary angle {s, v}-plane. It has been determined
that measured BRDF’s show that reflectance functions often
depends on the angles the surface normal makes with the light
source and another direction in the plane defined by the
source and camera directions. In step 203, the light direction
is known. In some embodiments, using 2 or more differential
motions of the camera, BRDF terms may be eliminated to
derive an inhomogeneous quasilinear PDE for surface depth.
This PDE can be solved to recover characteristic curves of the
surface. The characteristic curves are interpolated to recover
dense depth.

One example of an isotropic BRDF equation is as follows:

logp(n, s, v) = pn’ s, n”y), Equation (19)

where
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-continued
s+ kv
s+ kvl

Equation (20)
y

In one example, the differential stereo equations for use in
step 203 may include:

pr+g=w'n, Equation (21)

and

T Equation (22
R:Lys[Zk(l+k(b)n—((b+kgp)s]xv quation (22)

Q21 + k@2

Step 203 may include eliminating BRDF using a rank
deficiency across two or more images. One example of an
inhomogeneous quasilinear PDE for use in step 203 may be as
follows:

(N +A2)z, 4+ (N 3+ N g )z, 40 =0 Equation (23)

One image reconstruction method for use with step 203
may include recovering characteristic curves using the
method of characteristics, and interpolating characteristic
curves to recover dense depth. Another image reconstruction
method for use with step 202 may include to discretize the
quasilinear PDE, and to solve for depth as a nonlinear opti-
mization problem.

Under orthographic projection, for a BRDF of unknown
functional form that depends on light source and an arbitrary
direction in the source-view plane, two different motions of
the camera can suffice to yield a BRDF-invariant constraint
on surface depth.

Given depths at a few points on a surface with unknown
BRDF, the above propositions from at least one of steps 201,
202, and 203, yield depths along certain characteristic curves.
For a smooth surface, one may interpolate the depths between
the curves, in order to recover depth for the whole surface.

At step 300, shape recovery is considered from differential
stereo under perspective projection. In particular, unlike the
orthographic case, depth may be unambiguously recovered in
the perspective case, even when both the BRDF and the
lighting are unknown. In some embodiments, the rank defi-
ciency in step 101 can be used to estimate depth for perspec-
tive cameras.

At step 301, for a perspective camera, when the BRDF is
unknown, i.e., arbitrary, and the light direction is unknown,
i.e., unknown lighting, it has been determined that by using 3
or more differential motions of the camera, BRDF terms may
be climinated to recover surface depth. The methods
employed in step 301 may be applied to images taken from
objects made of arbitrary, unknown materials. Modeling at
step 301 may include isotropic BRDF equations as follows:

T Ty, ,,7,

Puts,stvntv=log p(n,s,v) Equation (24)

In one example, the differential stereo equations for use in
step 203 may include the following:

Equation (25)

Differential Stereo: p’( i +Z

¢ = -+ B, o T Equation (26)
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-continued
z Equation (27)
(1 + B2)my

(1 + B2)m

& =q +7

At step 301, the BRDF may be eliminated across 3 or more
images with the following equation that provides image
depth: z=¢, . The reconstruction method employed in step 301
may include recovering depth directly using z=¢,, followed
by regularizing for smoothness with the equation: Norm([z,,
z,]). Under perspective projection, three differential trial
motions of the camera suffice to yield a depth of a surface with
unknown isotropic BRDF and unknown light source.

In step 302 the BRDF model depends on light source and
view directions, i.e., the BRDF depends on s, v. The light
direction is unknown. The methods disclosed in step 302 may
be suitable for materials, such as fabrics. In some embodi-
ments, three or more differential motions of the camera, may
beused to eliminate BRDF terms to recover surface depth and
the slope of gradient. The two sources of surface information
may be combined in a joint optimization that is highly sparse
and suitable for dealing with noise. In accordance with some
embodiments of the present disclosure, the isotropic BRDF
equation for use with step 302 may be as follows:

log p(n,s,)=p(n’s,n™v) Equation (28)

In some embodiments, the differential stereo equation that
may be applied to step 302 may include the following equa-
tions:

— .7 Equation (29)

Equation (30)
X VAP +5X VP =nX(POs + pev) + s X pOn = pOnx v

In some embodiments, the process illustrated in step 302
may eliminate BRDF using three or more images in which the
depth is provided by z=e, and the gradient ratio is provided
by 1,z,+1,7 +1,=0, with 1,=e;, 1,=—e,. The equation for the
gradient ratio is a linear constraint.

One example of an image reconstruction method for use
with step 302 is to recover depth directly using the equation
z=€,, and to regularize for smoothness with norm ([z,,z,]). In
another example, an image reconstruction method for use
with step 302 may include solving a combined system pro-
vided by:

min (z— €1)? +Mhze + bz, + 5, Equation (31)
z

which is a joint depth and gradient optimization weighted by
A, and which may be solved by the constraint I, z,+1,7 +1,=0.
With standard difference, the above is a highly sparse system
in Z which may be solved efficiently.

At step 303, for a perspective camera, the BRDF model
depends on light source and half-angle directions, i.e., BRDF
depends on s, h. In this example, the light direction is known.
The method described in step 303 is applicable to objects
made of materials like metals and plastics. In some embodi-
ments, using three or more differential motions of the camera,
BRDF terms may be eliminated to recover surface depth and
a linear constraint on the gradient. The two sources of surface
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information may be combined in a joint optimization that is
highly sparse and can better deal with noise. Modeling at step
303 may include isotropic BRDF equations as follows:

pTs,nTh)=log p(n,s,v) Equation (32)

In some embodiments, the differential stereo equation that
may be applied to step 303 may include the following equa-
tions:

, 7 Equation (33)
=w'n,

(2 (1
p(1+ﬁz)+r(1+ﬁz)+q
where

T h)sxv

ls+vIl s +vii?

nXy

7=,

In some embodiments, the process illustrated in step 303
may eliminate BRDF using three or more images in which the
depth is provided by z=¢,, and the gradient ratio is provided
by 1,741,z +1,=0, with 1,=e;, 1,=—e,. The equation for the
gradient ratio is a linear constraint.

One example of an image reconstruction method for use
with step 303 is to recover depth directly using the equation
z=€,, and to regularize for smoothness with norm([z,,z,]). In
another example, an image reconstruction method for use
with step 303 may include solving a combined system pro-
vided by:

min (2= &)+ A ze + by + )7, Equation (34)

which is a joint depth and gradient optimization weighted by
A, and which may be solved by the constraint I, z,+1,z +1,=0.
With standard difference, the above is a highly sparse system
in z which may be solved efficiently.

At step 304, for a perspective camera, the BRDF model
depends on light source and an arbitrary direction in the
source-view plane, i.e., BRDF depends on s, and s-v angle. In
this example, the light direction is known. The method
described in step 304 is applicable to objects coated with
materials like paint. In some embodiments, using three or
more differential motions of the camera, BRDF terms may be
eliminated to recover surface depth and a linear constraint on
the gradient. The two sources of surface information may be
combined in a joint optimization that is highly sparse and can
better deal with noise. Modeling at step 304 may include
isotropic BRDF equations as follows:

logp(n, s, v) = p(n’ s, n'y), Equation (35)

s+ky
T ls+ |

y

In some embodiments, the differential stereo equation that
may be applied to step 304 may include the following equa-
tions:

T Equation (36)

) 1
p(%ﬁz)+r(l+ﬁz

where
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-continued

7 Equation (37
P —[2k(L + k@) — (@ +kg)s] v quation (37)
21 + kD)2

In some embodiments, the process illustrated in step 304
may eliminate BRDF using three or more images, in which
the depth is provided by z=¢,, and the gradient ratio is pro-
vided by 1,z +1,7 +1,=0.

One example of an image reconstruction method for use
with step 304 is to recover depth directly using the equation
z=€,, and to regularize for smoothness with norm([z,.z ]). In
another example, an image reconstruction method for use
with step 304 may include solving a combined system pro-
vided by:

min (z-&)® + Az, + by +5), Equation (38)
z

which is a joint depth and gradient optimization weighted by
A, and which may be solved by the constraint 1,z +1,z +1,=0.
With standard difference, the above is a highly sparse system
in Z which may be solved efficiently.

In some embodiments, the methods, systems and computer
products disclosed herein model the correct dependence of
surface reflectance on surface normal, lighting and viewing
directions instead of assuming brightness constancy or Lam-
bertian reflectance. A rank deficiency is recognized in the
differential stereo relations that it is used to eliminate BRDF
and lighting dependence. By managing to eliminate the
BRDF, the methods, systems and computer products dis-
closed herein can handle objects that reflect light in complex
ways, without need to calibrate the lighting (for perspective
cameras). For orthographic cameras, BRDF-invariant expres-
sions are derived in the form of quasilinear PDEs, which can
be conveniently solved with predictable solution properties
(initial conditions, accuracy and convergence behavior). For
perspective cameras, linear constraints are derived on depth
and gradient, which can be solved efficiently as a sparse linear
system to yield surface depth with unknown BRDF and
unknown light source.

In an orthographic camera, the BRDF is dependent on
source and view directions (valid for materials like fabrics)
when the lighting is unknown. In an orthographic camera, the
BRDF is dependent on source and half-angle directions (valid
for materials like plastics and metals) when the lighting is
known. In an orthographic camera, the BRDF is dependent on
source and arbitrary direction in source-view plane (valid for
like paint) when the lighting is known.

In a perspective camera, the BRDF may be unknown or
arbitrary with unknown lighting. The BRDF may be depen-
dent on source and view directions (valid for materials like
plastics and metals) with known lighting. In a perspective
camera, the BRDF may be dependent on source and half-
angle directions (valid for materials like plastics and metals),
with known lighting. In a perspective camera, the BRDF may
be dependent on source and arbitrary direction in source-view
place (valid for materials like paints), having known lighting.

FIG. 6 depicts one embodiment of a computer vision sys-
tem 400 to perform the methods and computer products dis-
closed herein. In one embodiment, the system 400 preferably
includes one or more processors 518, e.g., hardware proces-
sors, and memory 508, 516 for storing applications, modules
and other data. In one example, the one or more processors
518 and memory 508, 506 may be components of a computer,
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in which the memory may be random access memory (RAM),
a program memory (preferably a writable read-only memory
(ROM) such as a flash ROM) or a combination thereof. The
computer may also include an input/output (I/O) controller
coupled by a CPU bus. The computer may optionally include
a hard drive controller, which is coupled to a hard disk and
CPU bus. Hard disk may be used for storing application
programs, such as some embodiments of the present disclo-
sure, and data. Alternatively, application programs may be
stored in RAM or ROM. /O controller is coupled by means of
an I/O bus to an I/O interface. I/O interface receives and
transmits data in analog or digital form over communication
links such as a serial link, local area network, wireless link,
and parallel link.

The system 400 may include one or more displays 514 for
viewing. The displays 514 may permit a user to interact with
the system 400 and its components and functions. This may
be further facilitated by a user interface 520, which may
include amouse, joystick, or any other peripheral or control to
permit user interaction with the system 400 and/or its devices,
and may be further facilitated by a controller 512. It should be
understood that the components and functions of the system
400 may be integrated into one or more systems or worksta-
tions. The display 514, a keyboard and a pointing device
(mouse) may also be connected to I/O bus of the computer.
Alternatively, separate connections (separate buses) may be
used for I/O interface, display, keyboard and pointing device.
Programmable processing system may be preprogrammed or
it may be programmed (and reprogrammed) by downloading
aprogram from another source (e.g., afloppy disk, CD-ROM,
or another computer).

The system 400 may receive input data 502 which may be
employed as input to a plurality of modules 505. The plurality
of modules 505 may include a module for deriving a relation-
ship of spatial and temporal image derivatives of an object to
bidirectional reflectance distribution function (BRDF)
derivatives under camera motion, which may be referred to as
a spatial and temporal image derivative module 506. In one
embodiment, the spatial and temporal image derivative mod-
ule 506 may include instructions to execute using a processor
steps 100, 101 and 102 of the method described above with
reference to FIG. 2. The plurality of modules 505 may also
include an orthographic module 508 and a perspective mod-
ule 510. The orthographic module 508 may include instruc-
tions to execute using a processor steps 200, 201, 202 and 203
of the method described above with reference to FIG. 2. The
perspective module 510 may include instructions to execute,
e.g. execute using a processor, steps 300, 301, 302, 303 and
304 of the method described above with reference to FIG. 2.

The system 400 may produce output data 522, which in one
embodiment may be displayed on one or more display
devices 514. It should be noted that while the above configu-
ration is illustratively depicted, it is contemplated that other
sorts of configurations may also be employed according to the
present principles.

Embodiments described herein may be entirely hardware,
entirely software or including both hardware and software
elements. In a preferred embodiment, the present invention is
implemented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

Embodiments may include a computer program product
accessible from a computer-usable or computer-readable
medium, which may be non-transistory, providing program
code for use by or in connection with a computer or any
instruction execution system. A computer-usable or computer
readable medium may include any apparatus that stores, com-
municates, propagates, or transports the program for use by or
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in connection with the instruction execution system, appara-
tus, or device. The medium can be magnetic, optical, elec-
tronic, electromagnetic, infrared, or semiconductor system
(or apparatus or device) or a propagation medium. The
medium may include a computer-readable medium such as a
semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk, etc.

It was unknown prior to the methods, apparatus and sys-
tems disclosed herein whether shape could be recovered from
camera motions under conditions of general, unknown bidi-
rectional reflectance distribution function (BRDF). The
methods, apparatus and systems disclosed herein handle
shape reconstruction under challenging imaging conditions.
Prior methods simply the problem of determining shape with
physically incorrect assumptions like brightness constancy or
diffuse reflectance. By accounting for the BRDF, the meth-
ods, apparatus and systems disclosed herein improve the
accuracy of shape reconstruction.

The foregoing is to be understood as being in every respect
illustrative and exemplary, but not restrictive, and the scope of
the invention disclosed herein is not to be determined from the
Detailed Description, but rather from the claims as inter-
preted according to the full breadth permitted by the patent
laws. Additional information is provided in an appendix to the
application entitled, “Additional Information™. It is to be
understood that the embodiments shown and described herein
are only illustrative of the principles of the present invention
and that those skilled in the art may implement various modi-
fications without departing from the scope and spirit of the
invention. Those skilled in the art could implement various
other feature combinations without departing from the scope
and spirit of the invention.

What is claimed is:

1. A computer vision method comprising:

deriving, with a processor, a relationship of spatial and
temporal image derivatives of an object to bidirectional
reflectance distribution function (BRDF) derivatives
under camera motion that provides an image sequence;

deriving a quasilinear partial differential equation for solv-
ing surfaced depth for orthographic projections using
the relationship of spatial and temporal image deriva-
tives to bidirectional reflectance distribution function
(BRDF) derivatives;

solving the surface depth from the quasilinear partial dif-
ferential equation; and

reconstructing an image of the object from the solving of
the surface depth for orthographic projections,

wherein the BRDF comprises a negative incoming light
direction, w,, and outgoing direction, w,, both defined
with respect to the surface normal, n, and returns the
ratio of reflected radiance exiting along m, to the irradi-
ance incident on the surface from direction w,, each
direction  is itself parameterized by azimuth angle ¢
and zenith angle 0, therefore the BRDF as a whole is
4-dimensional and the BRDF has units sr™!, with stera-
dian (sr) being a unit of solid angle, therefore the BRDF
as awhole is 4-dimensional and the BRDF has units sr™?,
with steradian (sr) being a unit of solid angle,

wherein the BRDF comprises

dL(w,)  dLd{w)
dE(w;) ~ Li{w)cosOdw;

Flw;, wy) =
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where L is radiance, or power per unit solid-angle-in-
the-direction-of-a-ray per unit projected-area-perpen-
dicular-to-the-ray, E is irradiance, or power per unit
surface area, @, is angle between , and surface normal,
n and index i indicates incident light, whereas index rr
indicates reflected light.

2. The method of claim 1, wherein the quasilinear partial
differential equation is solved using a method of characteris-
tics.

3. The method of claim 1, wherein a shape of the object for
the image is recovered from camera motion under conditions
of'said bidirectional reflectance distribution function (BRDF)
that is unknown.

4. The method of claim 1 further comprising a non-transi-
tory computer readable medium comprising a computer read-
able program for executing the method of computer vision,
wherein the computer readable program is executed on a
computer.

5. A system for computer vision comprising:

a spatial and temporal image derivative module for deriv-
ing a relationship of spatial and temporal image deriva-
tives from an object to unknown bidirectional reflec-
tance distribution function (BRDF) derivatives under
camera motion to provide an image sequence using a
processor;

an orthographic module for deriving with a processor a
quasilinear partial differential equation for solving sur-
faced depth for orthographic projections using the rela-
tionship of spatial and temporal image derivatives to
bidirectional reflectance distribution function (BRDF)
derivatives, solving the surface depth from the quasilin-
ear partial differential equation, and reconstructing an
image of'the object from the solving of the surface depth
for orthographic projections; and
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a perspective module for estimating depth from the spatial
and temporal image derivatives, deriving a constraint on
surface gradient of the object, combining the depth and
the constraint of the surface gradient to yield a solution
for surface depth for perspective projections as a sparse
linear system, and reconstructing an image of the object
from the solution for surface depth for perspective pro-
jections,

wherein the BRDF comprises a negative incoming light
direction, w,, and outgoing direction, ®,, both defined
with respect to the surface normal, n, and returns the
ratio of reflected radiance exiting along w, to the irradi-
ance incident on the surface from direction w,, each
direction  is itself parameterized by azimuth angle ¢
and zenith angle 0, therefore the BRDF as a whole is
4-dimensional and the BRDF has unit sr™!, with stera-
dian (sr) being unit of solid angle, therefore the BRDF as
a whole is 4-dimensional and the BRDF has units sr™?,
with steradian (sr) being a unit of solid angle,

wherein the BRDF comprises

dL(w,)  dL{w)
dE(w;) ~ Li{w)cosOdw;

frlwi, we) =

where L is radiance, or power per unit solid-angle-in-
the-direction-of-a-ray per unit projected-area-perpen-
dicular-to-the-ray, E is irradiance, or power per unit
surface area, @, is angle between , and surface normal,
n and index i indicates incident light, whereas index rr
indicates reflected light.
6. The method of claim 1, wherein the BRDF comprises a
four-dimensional function that defines how light is reflected
at an opaque surface.



